目前,深度学习的潜能已被广泛认可,也许您现在正在应用程序上使用深度学习。为了让机器视觉开发者能够充分利用这项技术,菲力尔推出了

  FLIR Firefly DL通过集成高质量的Sony Pregius图像传感器和符合GenICam的Intel Movidius Myriad 2视觉处理单元 (VPU),将机器视觉和深度学习推断相结合。FLIR机器视觉相机尺寸小巧、重量轻且功耗低,是嵌入移动、桌面和手持系统的理想选择。

  位于FLIR Firefly® DL核心的Intel Movidius Myriad 2视觉处理单元(VPU)是一种新型处理器。VPU结合了高速硬件图像处理过滤器、通用CPU内核以及平行矢量处理内核。与GPU的通用内核相比,

  推断是在新捕获的、无标签真实数据上应用的深度学习。推断是指受训后的神经网络根据新数据做出预测的结果。

  传统智能相机结合了机器视觉相机和运行基于规则的图像处理软件的单板计算机。智能相机可以较好解决简单问题,例如读取条形码或回答“孔是否应该位于该部分?”这类提问。

  ,例如“这是出口级苹果吗?” 当使用已知的优质图像进行训练时,推断相机可以轻松识别基于规则的检查系统无法识别的非预期内缺陷,使其对差异性更加宽容。

  可以使用推断来标记传至主机的图像,该主机使用传统的基于规则的图像处理方式。通过这种方式,用户可快速扩展其现有视觉系统的能力。该混合式系统架构同样也可以触发传统视觉系统。

  FLIR Firefly® DL相机可以节省大量空间,因为传统智能相机中使用的计算硬件功耗效率更低,而且比FLIR Firefly®DL相机中的VPU大得多。FLIR Firefly® DL相机尺寸只有27mmx27mm,可随时集成到紧凑的空间中。

  ,使用户可灵活利用快速进步的深度学习网络及其训练和优化的相关工具链。相反,使用专有工具对智能相机进行编程可能会落后于新技术。

  在视觉系统边缘进行推断,可以促进系统速度、可靠性、功率效率和安全性的提升。

  :边缘推断与其他形式的边缘计算一样,图像处理可在离开中央服务器,靠近数据源进行。无需将所有图像传输至远程服务器,只需传送描述数据。这将大幅减少系统需传输的数据量,使网络带宽和系统延迟降低。

  :对于某些应用,FLIR Firefly® DL不需要依靠服务器和网络基础设施,就可提升其自身可靠性。FLIR Firefly® DL通过其内置的VPU,可作为独立传感器运行。它可捕捉图像并根据图像做出决策,然后使用GPIO信号触发操作。

  :只在需要时触发视觉系统意味着更多的处理时间可用在传统基于规则的图像处理和分析上。深度学习推断可在满足特定条件时触发高功率图像分析。Myriad 2 VPU通过级联网络支持可节省额外功率。如此可以实现多层分析,只要满足前一个网络的条件,更复杂、功率更高的网络就可以启用。

  提供了一条从深入学习的研发到实际应用程序的方便途径。它可随时作为独立传感器使用,捕捉图像并基于图像做出决策,从而触发GPIO行为。

  )的成本建立起完整的视觉系统边缘推断。视觉系统开发人员可以使用Intel OpenVINO工具包在同一个驱动FLIR Firefly® DL相机内建推断的VPU上轻松优化和验证神经网络的性能。这使得用户能够使用相同的相机,准确评估Myriad 2驱动的、并行于传统算法推断的性能。

  深度学习推断将从根本上改变视觉系统设计和编程的方式。它比使用传统基于规则的方式更加快速精确地做出复杂且主观的决策。

  通过集合Sony Pregius传感器、GenICam 界面和 Intel Movidius Myriad 2 VPU,FLIR Firefly® DL相机将机器视觉与深度学习相结合

  。这种新型推断相机提供了一种在机器视觉应用中部署深度学习推断的理想路径。

  深圳海关食品检验检疫技术中心337.00万元采购气相色谱仪,气质联用仪

  新品发布效率提升1000倍!NanoTemper发布超高通量亲和力筛选平台 Dianthus uHTS

  【成都·NCASI·议程公布】第38分会:新能源 (含氢能 )分析技术、仪器和标准

  FLIR Exx高清热像仪搭配全新双视场镜头,大型目标检测从此轻松高效!

  FLIR Ex Pro热像仪拆解盛宴:透视科技内核,领略精密之美!|文末福利

  如何破解危险气体泄漏检测难题?Vertex公司揭秘:FLIR Gx320成检测利器!

  十堰燃气爆炸事故“敲警钟”,FLIR GF77让你“看”见天然气,安全查泄漏!